Thermodynamics Formulas

Name	Formula	
1 st Law of Thermodynamics	$\Delta E_{universe} = \Delta E_{system} + \Delta E_{surroundings}$	Energy cannot be created nor destroyed – only change forms.
2 nd Law of Thermodynamics	$\Delta \mathbf{S}_{\text{universe}} = \Delta \mathbf{S}_{\text{sys}} + \Delta \mathbf{S}_{\text{surr}} \geq 0$	Entropy of the universe is always increasing.
3 rd Law of Thermodynamics	$\mathbf{S} = \mathbf{K}_{\mathbf{B}} \mathbf{I} \mathbf{n} \mathbf{W} = \mathbf{K}_{\mathbf{B}} \mathbf{I} \mathbf{n} (1) = 0$	S of a pure crystal at 0K is 0 J/mol·K
Enthalpy	$\Delta H = q$	Enthalpy, ΔH , is the measure of heat energy in a system at constant pressure.
Standard Enthalpy	$\Delta H^{\circ} = \sum \Delta H^{\circ}_{f,products} + \sum \Delta H^{\circ}_{f,reactants}$	Enthalpy change when one mole of a substance is made from its elements in standard conditions. (Enthalpy Change of Formation)
Entropy	$\Delta S = \frac{q_{\text{reversible}}}{T}$	 Entropy, ∆S, is the measure of disorder in a system. A higher entropy = A greater amount of disorder. Solids < Liquids < Gases.
	$\Delta S_{\text{surroundings}} = -\frac{\Delta H_{\text{system}}}{T}$	
Standard Entropy	$\Delta S^{\circ} = \sum \Delta S^{\circ}_{\text{products}} + \sum \Delta S^{\circ}_{\text{reactants}}$	(Standard Molar Entropies)
Gibb's Free Energy	$\Delta \mathbf{G} = \sum \Delta \mathbf{G}_{\text{products}} + \sum \Delta \mathbf{G}_{\text{reactants}}$	Used to to predict whether a process will occur spontaneously at a constant temperature and pressure.
	$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$	
	$\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \cdot \ln(\mathbf{Q})$	Q = Reaction Quotient R = 8.3145 J/mol·K
Standard Free Energy	$\Delta G^{\circ} = \sum \Delta G^{\circ}_{f, products} + \sum \Delta G^{\circ}_{f, reactants}$	
Specific Heat Capacity, c	$q = mc \Delta T$	The amount of heat energy needed to raise the temperature of 1 gram of a substance by 1°C. Used in "coffee-cup" calorimetry. m = mass in grams. (Specific Heat Capacities)
Heat Capacity, C	$q = C \Delta T$	The amount of energy required to raise the temperature of a substance by 1°C. Used in "bomb" calorimetry.